Regulation of multispanning membrane protein topology via post-translational annealing
نویسندگان
چکیده
The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.
منابع مشابه
Regulation of multispanning membrane protein topology via 1 post - translational annealing
6 The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established 7 during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual8 topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic 9 shifts in its topology. We us...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملCooperation of Stop-Transfer and Conservative Sorting Mechanisms in Mitochondrial Protein Transport
The mitochondrial inner membrane is a highly protein-rich membrane with central importance for oxidative phosphorylation and metabolite transport. A large number of inner-membrane proteins are synthesized as preproteins with cleavable presequences. Opposing mechanisms of preprotein insertion into the membrane have been debated: stop-transfer with arrest in the inner membrane versus conservative...
متن کاملTesting the charge difference hypothesis for the assembly of a eucaryotic multispanning membrane protein.
The Glut1 glucose transporter is a glycoprotein whose membrane topology has been verified by a number of experimental observations, all of which are consistent with a 12-transmembrane helix model originally based on hydrophobicity analysis. We used Glut1 as a model multispanning membrane protein to test the Charge Difference Hypothesis (Hartmann, E., Rapoport, T. A., and Lodish, H. F. (1989) Pr...
متن کاملDual-topology insertion of a dual-topology membrane protein
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015